@Форум Фантазий

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » @Форум Фантазий » Новости в мире и стране » Большой адронный коллайдер


Большой адронный коллайдер

Сообщений 1 страница 10 из 14

1

http://media.aplus.by/uploads/posts/thumbs/1215766028_f7vk7inz4i.jpg

Большой адро́нный колла́йдер (англ. Large Hadron Collider, LHC; сокр. БАК) — ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений. Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire, CERN), на границе Швейцарии и Франции, недалеко от Женевы. По состоянию на 2008 год БАК является самой крупной экспериментальной установкой в мире.

Большим БАК назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м; адронным — из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков; коллайдером (англ. collide — сталкиваться) — из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных местах.

Поставленные задачи

В начале XX века в физике появились две основополагающие теории — общая теория относительности (ОТО) Альберта Эйнштейна, которая описывает Вселенную на макроуровне, и квантовая теория поля, которая описывает Вселенную на микроуровне. Проблема в том, что эти теории несовместимы друг с другом. Например, для адекватного описания происходящего в чёрных дырах нужны обе теории, а они вступают в противоречие.

Эйнштейн многие годы пытался разработать единую теорию поля, но безуспешно, поскольку игнорировал квантовую механику. В конце 1960-х физикам удалось разработать Стандартную модель (СМ), которая объединяет три из четырёх фундаментальных взаимодействий — сильное, слабое и электромагнитное. Гравитационное взаимодействие по-прежнему описывают в терминах ОТО. Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: ОТО и СМ. Их объединения пока достичь не удалось из-за трудностей создания теории квантовой гравитации.

Для дальнейшего объединения фундаментальных взаимодействий в одной теории используются различные подходы: теория струн, получившая своё развитие в М-теории (теории бран), теория супергравитации, петлевая квантовая гравитация и др. Некоторые из них имеют внутренние проблемы, и ни у одной из них нет экспериментального подтверждения. Проблема в том, что для проведения соответствующих экспериментов нужны энергии, недостижимые на современных ускорителях заряженных частиц.

БАК позволит провести эксперименты, которые ранее было невозможно провести и, вероятно, подтвердит или опровергнет часть этих теорий. Так, существует целый спектр физических теорий с размерностями больше четырёх, которые предполагают существование «суперсимметрии» — например, теория струн, которую иногда называют теорией суперструн именно из-за того, что без суперсимметрии она утрачивает физический смысл. Подтверждение существования суперсимметрии, таким образом, будет косвенным подтверждением истинности этих теорий.

Изучение топ-кварков

Топ-кварк — самый тяжёлый кварк и, более того, это самая тяжёлая из открытых пока элементарных частиц. Согласно последним результатам Тэватрона, его масса составляет 171,4 ± 2,1 ГэВ. Из-за своей большой массы топ-кварк до сих пор наблюдался пока лишь на одном ускорителе — Тэватроне, на других ускорителях просто не хватало энергии для его рождения. Кроме того, топ-кварки интересуют физиков не только сами по себе, но и как «рабочий инструмент» для изучения хиггсовского бозона. Один из наиболее важных каналов рождения хиггсовского бозона в БАК — ассоциативное рождение вместе с топ-кварк-антикварковой парой. Для того, чтобы надёжно отделять такие события от фона, надо вначале хорошо изучить свойства самих топ-кварков.

Изучение механизма электрослабой симметрии

Одной из основных целей проекта является экспериментальное доказательство существования бозона Хиггса — частицы, предсказанной шотландским физиком Питером Хиггсом в 1960 году в рамках Стандартной Модели. Бозон Хиггса является квантом так называемого поля Хиггса, при прохождении через которое частицы испытывают сопротивление, представляемое нами как масса. Сам бозон нестабилен и имеет большу́ю массу (более 120 ГэВ). На самом деле, физиков интересует не столько сам хиггсовский бозон, сколько хиггсовский механизм нарушения электрослабой симметрии. Именно изучение этого механизма, возможно, натолкнёт физиков на новую теорию мира, более глубокую, чем СМ.

Изучение кварк-глюонной плазмы

Ожидается, что в ускорителе в режиме ядерных столкновений будут происходить не только протон-протонные столкновения, но и столкновения ядер свинца. При неупругом столкновении двух ядер на ультрарелятивистских скоростях на короткое время образуется и затем распадается плотный и очень горячий комок ядерного вещества. Понимание происходящих при этом явлений (переход вещества в состояние кварк-глюонной плазмы и её остывание) нужно для построения более совершенной теории сильных взаимодействий, которая окажется полезной как для ядерной физики, так и для астрофизики.

Поиск суперсимметрии

Первым значительным научным достижением экспериментов на БАК может стать доказательство или опровержение «суперсимметрии» — теории, гласящей, что любая элементарная частица имеет гораздо более тяжёлого партнера, или «суперчастицу».

Изучение фотон-адронных и фотон-фотонных столкновений

Протоны электрически заряжены, поэтому ультрарелятивистский протон порождает облако почти реальных фотонов, летящих рядом с протоном. Этот поток фотонов становится ещё сильнее в режиме ядерных столкновений, из-за большого электрического заряда ядра. Эти фотоны могут столкнуться как со встречным протоном, порождая типичные фотон-адронные столкновения, так и друг с другом.

Идея проекта Большого адронного коллайдера родилась в 1984 году и была официально одобрена десятью годами позже. Его строительство началось в 2001 году, после окончания работы предыдущего ускорителя — Большого электрон-позитронного коллайдера.

В ускорителе предполагается сталкивать протоны с суммарной энергией 14 ТэВ (то есть 14 тераэлектронвольт или 14·1012 электронвольт) в системе центра масс налетающих частиц, а также ядра свинца с энергией 5,5 ГэВ (5,5·109 электронвольт) на каждую пару сталкивающихся нуклонов. Таким образом, БАК будет самым высокоэнергичным ускорителем элементарных частиц в мире, на порядок превосходя по энергии своих ближайших конкурентов — протон-антипротонный коллайдер Тэватрон, который в настоящее время работает в Национальной ускорительной лаборатории им. Энрико Ферми (США), и релятивистский коллайдер тяжёлых ионов RHIC, работающий в Брукхейвенской лаборатории (США).

Ускоритель расположен в том же туннеле, который прежде занимал Большой электрон-позитронный коллайдер. Туннель с длиной окружности 26,7 км проложен на глубине около ста метров под землёй на территории Франции и Швейцарии. Для удержания и коррекции протонных пучков используются 1624 сверхпроводящих магнита, общая длина которых превышает 22 км. Последний из них был установлен в туннеле 27 ноября 2006 года. Магниты будут работать при температуре 1,9 K (−271 °C). Строительство специальной криогенной линии для охлаждения магнитов закончено 19 ноября 2006 года.

Испытания

2008 год

11 августа успешно завершена первая часть предварительных испытаний.[3] Во время испытаний пучок заряженных частиц прошёл чуть более трёх километров по одному из колец БАК. Таким образом, учёным удалось проверить работу синхронизации предварительного ускорителя, так называемого протонного суперсинхротрона (SPS), и системы правой доставки луча. Эта система передаёт в основное кольцо разогнанные пучки таким образом, что они начинают двигаться по кольцу по часовой стрелке. В результате испытаний удалось оптимизировать работу системы.

24 августа прошёл второй этап испытаний. Была протестирована инжекция протонов в ускорительное кольцо БАК в направлении против часовой стрелки.[4]

10 сентября был произведён официальный запуск коллайдера. В 12:24:30 по московскому времени[5] (по официальной информации, в 12:28 по московскому времени[6]) запущенный пучок протонов успешно прошёл весь периметр коллайдера по часовой стрелке. В 17:02 по московскому времени[7] запущенный против часовой стрелки пучок протонов также успешно прошёл весь периметр коллайдера.

12 сентября, примерно в 00:30 по московскому времени, команде БАК удалось запустить и непрерывно удерживать циркулирующий пучок в течение 10 минут. Чуть позже пучок был запущен вновь и циркулировал уже непрерывно, прерываясь лишь в случае необходимости. На этом задача по установлению циркулирующего пучка завершилась, и физики приступили к подробным тестам магнитной системы.[8]

19 сентября, в 14:05 по московскому времени, в ходе тестов магнитной системы сектора 3-4 (34) произошёл инцидент, в результате которого БАК вышел из строя.[9] Согласно данным предварительного расследования, подтверждённым и детализированным позднее, один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения (криогенной системы), что привело к выбросу около 6 тонн жидкого гелия в туннель и, как следствие, резкому росту температуры. Для восстановления криогенной системы потребуется вернуть этот участок ускорителя к комнатной температуре, а после ремонта — охладить его снова до рабочей температуры.

23 сентября официальный представитель ЦЕРНа сообщил, что БАК возобновит работу не раньше весны 2009 года. Торжественная церемония его официального открытия, тем не менее, состоится 21 октября, как и планировалось.[10]

16 октября ЦЕРН распространил пресс-релиз, в котором описываются промежуточные результаты расследования инцидента, произошедшего 19 сентября.[11] Подробная техническая информация представлена в четырёхстраничном отчёте.[12]

На следующем этапе испытаний будут производиться одновременные запуски пучков навстречу друг другу, чтобы наблюдать, что происходит при их «лобовых» столкновениях. Затем частицы будут сталкиваться на более высоких энергиях. Выход на энергию 14 ТэВ протон-протонного столкновения намечен на начало 2009 года.

0

2

Как вы думаете, приведет ли это к концу света?

0

3

Я была в МГУ на лекции о БАКе... Интересно, теперь по крайней мере стало все про него ясно)
И судя по тому, что там расказывали, вероятность конца света нулевая.
Однако когда лекция закончилась, на сцену выскочила какая-то бабушка и начала на весь зал кричать что-то типа "Вы погубите планету, дайте Земле ещё пожить"..и т.п.

0

4

Я честно думаю, что поввредится (серьёзно) несколько километров в диаметре от этого коллайдера... А конец света... даже не знаю, но я не верю! Я верю предсказаниям Нострадамуса!

Писака
Материал из Википедии?

0

5

мне кажется, что всеобщего конца Света не будет, может только Европу "разнесёт"... да кто знает, кто знает ))

+1

6

Alfa написал(а):

может только Европу "разнесёт"... да кто знает, кто знает ))

посмотрите в мою подпись и не парьтесь))) не наезжайте, эт чисто моё мнение!

0

7

Оксаночка
я разве что-то говорю? и это тоже моё мнение :) да и просто если будет "бум", то вряд ли бдет конец Света. если он будет ;))

+1

8

Alfa
не, я имела ввиду на текст в моей подписи не злитесь все, не только ты. Вообще, я с тобой согласна))) +2!

0

9

Кто еще не видел: камеры он-лайн времени, как работает большой адронный коллайдер - тут

+2

10

QQQ
+1)) прикольно))

Вообще, это интересно, увидеть, как всё происходило. С другой стороны - опасность есть. Ну, надеемся, что всё хорошо будет)

0


Вы здесь » @Форум Фантазий » Новости в мире и стране » Большой адронный коллайдер